On the relation of energy and electron transfer in multidimensional chromophores based on polychlorinated triphenylmethyl radicals and triarylamines.

نویسندگان

  • Markus Steeger
  • Stefanie Griesbeck
  • Alexander Schmiedel
  • Marco Holzapfel
  • Ivo Krummenacher
  • Holger Braunschweig
  • Christoph Lambert
چکیده

A star-like compound consisting of a polychlorinated triphenylmethyl radical (PCTM) core linked to three triarylamines (TAA) and a symmetric and an asymmetric hexaarylbenzene (HAB) both substituted with three PCTMs and three TAAs were synthesised. In the star-like compound a strong communication between the redox centres was observed by electron paramagnetic resonance spectroscopy and UV/Vis/NIR absorption measurements, whereas in the HABs only a weak interaction could be detected. The temporal evolution of the excited states was monitored by ultrafast transient absorption measurements. Within the first picosecond stabilisation of the charge transfer state was observed induced by solvent rotation. Anisotropic transient absorption measurements revealed that within the lifetime of the excited state (τ = 1-4 ps) energy transfer does not occur in the HABs whereas in the star-like system ultrafast and possibly coherent energy redistribution is observed. Taken this information together we made the identity between energy transfer and electron transfer in the specific systems apparent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microdosimetry: experimental methods and medical applications

Introduction: Microdosimetry is a fundamental method that studies the nature of energy transfer in micron volumes in the particular biological cells. In a biological target, the amount of ionization does not indicate the magnitude of biological radiation-induced damage. However, the severity of biological harm depends strongly on the amount of the linear energy transfer along t...

متن کامل

A Theoretical Study on the Structure-Radical Scavenging Activity of Some Hydroxyphenols

Antioxidants are made for the struggle and reconstruction of the damaged cells, because of their ability in destroying the free radicals. On account of their importance, a theoretical procedure was applied for the study of the molecular structure and radical scavenging activity of six hydroxyphenols which have been introduced as antioxidant compounds. All geometry structures were optimized by M...

متن کامل

Applying Density Functional Theory to Study NLO Properties of Benzyne-Based Chromophores

Density Functional Theory (DFT) calculations were employed to investigate the structural characteristics, electronic properties, and nonlinear optical properties of Benzyne-Based Chromophores at B3LYP/6-31G(d,p) level. The effects on the hyperpolarizabilities of various donor and acceptor substituent (H, F, Cl, Br, Me, NH2, OH, NH3+, COOH, CHO, CN, NO,NO2 ) were studied. The results reveale...

متن کامل

Ortho-phenylenediamine Based Bis-ureas as the Ion Selective Sensors; A QM/MD Study

Density functional theory dispersion corrected (DFT-D3)calculations and molecular dynamic (MD) simulation were applied to investigate the sensing ability of four types of receptors (RCs) composed of the ortho-phenylenediamine based bis-ureas for selective complexation with the anions such as Cl–, Br–, OAC–, PhCO2–, H2PO4– and HSO4– in the gas phase and DMSO. On the basis of the data obtained fr...

متن کامل

Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization.

We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 17  شماره 

صفحات  -

تاریخ انتشار 2015